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In their first chapter, Guillemin and Pollack lay down the foundations of Differential Topol-
ogy. Differential Topology deals with a class of objects called differentiable (smooth) mani-
folds, which are locally “like” Euclidean space. Much of the first chapter is based on maps
between smooth manifolds, as well as when a subset of a manifold is a manifold. In order
to solidify what any of this even means, we define a class of maps called smooth maps. Let
X ⊂ Rn be any subset, and let f : X → Rm. If X were open, we already have a definition
for what it means for f to be smooth - that it has partial derivatives of all order. But what
if X was not open? In this case, partial derivatives aren’t exactly well defined. To remedy
this, we look to locally extending f . That is, for any x ∈ X, there is an open set U ⊂ Rn

and a smooth map F : U → Rm (in the open sense, as U is open) where F |U∩X = f . If
f : X → Y was a smooth bijection with smooth inverse, we say that f is a diffeomorphism
between X and Y . We can check that diffeomorphism is an equivalence relation on spaces.

With all this in place, we can finally define what a differentiable manifold is. We say that
X ⊂ Rn is a k-manifold if it is locally diffeomorphic to an open set in Rk. That is, for every
x ∈ X, there is some (relatively) open V ⊂ X, an open set U ⊂ Rk, and a map φ : U → V
such that φ is a diffeomorphism. We say φ is a local parameterization and φ−1 is a local
coordinate system.

Now that we’ve set up the notion of a differentiable manifold, it makes sense to look at maps
between them. As before, we have the notion of smooth maps, which we can restrict to the
manifold setting. Since the map is smooth, it makes sense to look at the derivative of such
maps. Let X ⊂ Rn be a k-manifold. While we can define the derivative in a way such that
it sits inside its ambient space Rn, since X is locally diffeomorphic to Rk, it makes sense to
look at it in a way that’s more “independent” of its ambient space. To do this, let us take
inspiration from multidimensional analysis. Suppose f : U → Rm, where U ⊂ Rn is open.
We know that in this context, dfx is a linear map from Rm → Rn. With this in mind, let us
define the tangent space of X. Let x ∈ X and φ : U → X be a local parameterization of X
at x, with φ(0) = x. Since U ⊂ Rk is open, we can define dφ0 : Rk → Rn. We now define the
tangent space of X at x to be Tx(X) = dφ0(Rk). Although it is not clear that this is a well
defined space, in that it may depend on the choice of parameterizations, we can check that
fortunately, the tangent space is invariant under choice of parameterization. This is good,
because now, we have a platform to define the derivative of smooth maps of manifolds. The
tangent space is the best vector-space approximation to X at x. In particular, the tangent
space of a vector space about any point is that vector space itself. Moreover, we can check
that dim(Tx(X)) = k.

So, given f : X → Y where X is a k-manifold and Y is a l-manifold, let us define dfx. Given
some x ∈ X, let φ : U → X and ψ : V → Y be local parameterizations such that φ(0) = x,
ψ(0) = f(x). We can choose U and V such that the following diagram commutes, with
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h = ψ−1 ◦ f ◦ φ:

X Y

U V

f

φ

h

ψ

Since h : U → Rl, we can define dh0 in the standard way. From here, we can define dfx as
the map that makes the following diagram commute:

Tx(X) Tf(x)(Y )

Rk Rl

dfx

dφ0

dh0

dψ0

As before, we can check that this definition is invariant under the choice of parameterization.
In fact, dfx acts the way we would expect to. For example, the chain rule also acts as expected,
in that d(g ◦ f)x = dgf(x) ◦ dfx.

Now that we’ve defined derivative maps and tangent spaces, let us focus on them specifically.
In particular, let us examine how the properties of the derivative map tell us about the
behavior of the map itself. One of the most important results in this topic is the inverse
function theorem. The inverse function theorem states that given f : X → Y where dfx is an
isomorphism of tangent spaces, f is a local diffeomorphism at x. In fact, we can reformulate
this to mean that if dfx is an isomorphism, f is locally equivalent to the identity. That is,
we can find a U ⊂ Rk and maps φ : U → X and ψ : U → Y such that the following diagram
commutes:

X Y

U U

f

φ

id

ψ

This is an extraordinary result, in that the an isomorphism of tangent spaces tells us that
locally around x and f(x), X and Y are essentially “the same”. Clearly, this can only work
when dim(X) = dim(Y ). So what if dim(X) < dim(Y )? Here, the closest we can get to the
condition we had for the inverse function theorem is to have dfx to be injective. We say that
f is an immersion at x if dfx is an injection, and we say f is an immersion at M ⊂ X if f is
an immersion for every x ∈ M . As expected, we have a similar result to that of the inverse
function theorem, which we call the local immersion theorem. The local immersion theorem
tells us that when f is an immersion, it is locally equivalent to the canonical immersion
(ie. the map that appends 0’s). This too is an amazing result, in that if dfx is injective,
then a neighborhood of X containing x is basically “a component” of a neighborhood of Y
containing f(x). Now, if dim(X) > dim(Y ), we say f is a submersion if dfx is surjective.
Likewise, we have the local submersion theorem that tells us that if f is a submersion at x,
then it is locally equivalent to the local submersion (ie. “chopping off components”) at x. In
a way, this tells us the “opposite” story, that locally, a neighborhood of Y containing f(x)
is “a component of” a neighborhood of X containing x.
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It turns out that immersions and submersions are helpful in finding submanifolds! Let
f : X → Y be an immersion. As one may expect, it is possible for f(X) to be a submanifold
of Y . But what exactly are sufficient conditions in order for f(X) to be a manifold? It turns
out that if f is an embedding, that is, an injective proper (preimage of closed sets are closed)
immersion, then f(X) is an immersion. Guilleman and Pollack offers a few examples of f(X)
not being a manifold when these conditions are not met. In a way, this is a surprise. After
all, it’s natural to think that f simply being an injective immersion should guarantee f(X)
to be a manifold. However, it turns out that there are always some strange pathological
counterexamples to make this not the case!

Likewise, submersions are also helpful in telling the story of submanifolds. Let f : X → Y .
We say that y ∈ Y is a regular value of f if for every x ∈ f−1(y), f is a submersion at x.
Similarly, x ∈ X is a regular point if f is a submersion at x, and otherwise, we say x is
a critical point. Otherwise, y is a critical value. This leads us to a new way to determine
submanifolds of X, that is, if y ∈ Y is a regular value of f , f−1(y) is a submanifold of X,
with dimension dim(X)−dim(Y ). We see that this is the first step determine whether or not
the preimage of a submanifold is a manifold, by starting out with singleton sets, which leads
us to a more general question: given f : X → Y , and a submanifold Z ⊂ Y , when is f−1(Z)
a submanifold of X? The answer to this question lies with the concept of transversality.

Given a map between manifolds f : X → Y and a submanifold Z ⊂ Y , we say that f is
transverse to Z if for every x ∈ f−1(Z), Image(dfx) + Tf(x)(Z) = Tf(x)(Y ). This leads to
another result, that if f is transverse to Z, then f−1(Z) is a submanifold of X, with the
codimension of f−1(Z) in X equal to the codimension of Y in Z. The idea of transversality
is quite powerful, in that it provides the groundwork for “pulling back” a manifold into
another manifold. It’s also quite intuitive, in that in order for the preimage of a manifold to
be another manifold, it must have the necessary structure at every point. Transversality gives
us this structure, in that the preimage must “span enough space” in the “right directions”.

Another useful idea from transversality is when the intersection of two submanifolds is a
submanifold. We can define transversality of two spaces X,Z ⊂ Y similar to how we did
so above: given a submanifold X ⊂ Y , we say X and Z are transversal, and thus X ∩ Z is
a manifold, if Tx(X) + Tx(Z) = Tz(Y ), for all x ∈ X ∩ Z. We note that this is consistent
with the definition above, by considering the inclusion map i : X ↪→ Y , in which case,
i−1(Z)∩X = X ∩Z, which is the definition of i being transverse to Z. Similar to the above,
in order for the intersection to “span enough space”, the tangent spaces must not be “the
same”. It turns out that the condition of transversality is stable, in that it is “invariant”
under “slight perturbations”. More concretely, for smooth manifolds this means that given
f being transverse to Z, if F is a smooth homotopy of f to another function g, then there’s
some ε > 0 such that for all t < ε, ft is transverse to Z. The idea of stability is discussed in
more detail in the book, but due to the fact that it seems slightly less relevant in the grand
scheme of what’s going on, we will skip over these details.

From all of this, we see how the powerful and potent the idea of a submersion is. Simply
by checking if a map has a surjective derivative at a point, we can determine quite a lot of
structure between the spaces in question. That is, we see how submanifolds of the codomain
can help determine submanifolds of the domain. We will now introduce yet again, another
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powerful tool: Sard’s theorem. Sard’s theorem tells us that given a smooth map f : X → Y ,
almost all points in Y are regular values. That is, the set of critical values of Y has measure
zero. This is quite a surprise, in that it applies for any smooth map. In fact, this holds
even if dim(X) < dim(Y ), in which case, we know that no points of X is regular. One of
the consequences of this is that there can be no space filling curves in f : S1 → Y , where
dim(Y ) > 1. So, Sard’s theorem tells us that there are “many ways” to obtain submanifolds
of the domain, since the set of critical values of X is measure zero. Moreover, if we have
dim(X) < dim(Y ), it tells us that there is no way for a smooth f : X → Y to be bijective,
since every point of X is a critical point, and the critical values have measure zero. This
itself may not be too big of surprise, but it does help reinforce the structure that we know.

One of the areas in which Sard’s theorem comes to play is in Morse Theory. Given f : X → Y ,
if x ∈ X is a critical point, we say that it is nondegenerate if its Hessian matrix is nonsingular.
If a is a critical point of f , the Morse Lemma tells us that there is a local coordinate system
around a such that f(x) = f(a) +

∑
i,j

hijxixj, where hij is the ijth entry of the Hessian of f

at a. This leads us to Morse functions, functions whose critical points are all nondegenerate.
Morse functions are useful in telling us the local topology around critical points, using the
Morse Lemma. A consequence of Sard’s theorem is the abundance of Morse functions. Let
f : X → R, where X ⊂ RN . Now, for a ∈ Rn, we define fa = f(x) + a1x1 + · · · + anxn. In
this picture, Sard’s theorem tell us that for almost every a ∈ Rn, fa is a Morse function (ie.
the set of b ∈ Rn in which this is not true has measure zero). This is again a very impressive
result, in that it tells us Morse functions, which have nondegenerate critical points, are
“basically everywhere”. This opens up the field of Morse theory as a whole, which tell us
even more about the local structure of manifolds around critical points.

Another consequence of Sard’s Theorem is the result of the Whitney embedding theorem,
which deals with the dimension of Euclidean space required in order for there to be an
embedding of a k-manifold. In the beginning, when we were given a k-manifold, we always
had it embedded in an ambient euclidean space. But just how big does that space have to
be? Whitney’s theorem tells us that any k-manifold can be embedded in R2k+1. In fact, it
can be shown that any k-manifold can be embedded in R2k, although showing that is much
more difficult. This gives us a concrete number of dimensions an ambient euclidean space
must have in order to have a k-manifold embedded inside.

All of this comes to show what a powerful piece of machinery Sard’s theorem is, in that it
gives us results that at first glance, doesn’t seem related to the statement of the theorem at
all. Moreover, it gives us a picture of the importance of submersions in determining manifold
structure. Given a manifold, not only do submersions tell us about the inner structure of
that manifold (ie. telling us about submanifolds), submersions also tell us about the relation
the manifold has with its ambient space. All of this sets up a canvas for us to explore the
properties of manifolds as a whole, which includes both the substructure of manifolds, as
well as how they behave in the surrounding space they live in.
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